Approximation

Présentation (20 minutes) au séminaire du 5e.

Je présente le théorème d’approximation de Weierstrass pour les fonctions périodiques, en utilisant une base des polynômes trigonométriques récemment suggérée par Róth et al. (2009). Celle-ci se prête naturellement bien à notre application.

Théorème d’approximation de Weierstrass.
Soit f : \mathbb{R} \rightarrow \mathbb{R} une fonction 2\pi-périodique. Si f est continue, alors on peut construire des polynômes trigonométriques f_1, f_2, f_3, \dots tels que

f(x) = \sum_{i=1}^{\infty} f_i(x)

et tels que la convergence de la série ci-dessus est uniforme.

Ce théorème intervient dans plusieurs domaines: en topologie pour démontrer le théorème du point fixe de Brouwer, en géométrie pour l’inégalité isopérimétrique et en géométrie algébrique pour le théorème de Nash-Tognoli. Il implique que \{1, \cos(x), \sin(x), \cos(2x), \sin(2x), \dots\}, en tant que système orthonormal, est complèt dans L^2(\mathbb{S}^1). Plus généralement, on s’en sert pour ramener un problème sur les fonctions continues à un problème sur les polynômes, où le calcul différentiel et l’algèbre linéaire s’appliquent. Les démonstrations constructives du théorème fournissent de plus des outils permettant d’effectuer la régression ou la reconstruction de courbes et de surfaces.

Notions de base

Un polynôme trigonométrique (de degré m) est une fonction de x prenant la forme

a_0 + \sum_{n=1}^m \left\{a_n \cos(nx) + b_n \sin(nx)\right\}.

Notons que les sommes et les produits de polynômes trigonométriques sont encore de tels polynômes. De façon un peu moins évidente, ils forment un système de Chebyshev: pour tout ensemble \{x_i\}_{i=1}^{2m+1} de points distincts et pour tout \{y_i\}_{i=1}^{2m+1}\subset \mathbb{R}, il existe un unique polynôme trigonométrique P_m de degré m tel que

P_m(x_i)=y_i, \quad \forall i \in \{1,2,\dots, 2m+1\}.

Les fonctions périodiques et continues sur \mathbb{R} s’identifie aux fonctions continues sur le cercle

\mathbb{S}^1 = \mathbb{R}/2\pi\mathbb{Z}

munit de la distance de la longueur d’arc

d(u,v) = \min_{k \in \mathbb{Z}} |u-v+2\pi k|.

Cela suit d’un principe général: les fonctions continues sur \mathbb{R}^k et invariantes sous l’action d’un groupe G, dont les orbites ne possèdent pas de points d’accumulation, s’identifient aux fonctions continues sur le quotient \mathbb{R}^k / G munit de la distance d([u],[v]) = \min_{g, h\in G} \|g(u) - h(v)\|. (Ici, [u] est l’orbite de u sous l’action de G.) On peut obtenir, avec ces quotients, des surfaces telles le tore, le ruban de Mobius et la bouteille de Klein.

Démonstration du théorème

Considérons la fonction positive

C_{0,n}(u) = c_n\left(1+\cos(u)\right)^n,\quad c_n = \frac{2\pi}{2n+1}\left(\int_{0}^{2\pi} (1+\cos u)^n du\right)^{-1}

et ses translatées

C_{j,n}(u) = C_{0,n}\left(u - \tfrac{2\pi j}{2n+1} \right),\quad j=0,1, \dots, 2n

qui sont disposés d’une façon régulière autour du cercle.

Les C_{j,n} forment une partition de l’unité.

Remarquons que pour tout i \in \{0,1, \dots, 2n\}, on a

\sum_{j=0}^{2n} C_{j,n}\left(\tfrac{2\pi j}{2n+1}\right) = \sum_{j=0}^{2n} C_{j,n}(0)

par symétrie cyclique des C_{j,n}. Ainsi, la fonction \sum_{j=0}^{2n}C_{j,n} est constante en 2n+1 points. Comme c’est un polynôme trigonométrique de degré n et que ceux-ci forment un système de Chebyshev, il faut alors que ce soit une constante. Or,

\int_{0}^{2\pi} \sum_{j=0}^{2n} C_{j,n}(u) du = \sum_{j=0}^{2n}  \frac{2\pi\int_0^{2\pi} \left(1+\cos\left(u - \tfrac{2\pi j}{2n+1}\right)\right)^n du}{(2n+1)\int_0^{2\pi}\left(1+\cos u\right)^n du} = 2\pi,

d’où

\sum_{j=-n}^n C_{j,n} \equiv 1.

Construction des approximants

Posons

T_n(u) = \sum_{j=0}^{2n} f\left(\tfrac{2\pi j}{2n+1}\right) C_{j,n}(u), \quad T_0 = 0,

et montrons que T_n converge uniformément vers f lorsque n \rightarrow \infty. En prenant f_n = T_n-T_{n-1}, on aura démontré le théorème.

On calcule, en utilisant le fait que \sum_{j=0}^{2n} C_{j,n} \equiv 1,

|T_n (u) - f(u)| \le \sum_{j=0}^{2n} \left| f\left(\tfrac{2\pi j}{2n+1}\right) - f(u) \right| C_{j,n}(u) = (*).

Fixons maintenant \varepsilon > 0 et posons \delta > 0 tel que d(u,v) < \delta \Rightarrow |f(u) - f(v)| < \varepsilon. Avec A = \{j \,|\, d(u, \tfrac{2\pi j}{2n+1}) < \delta\}, la somme ci-dessus s’écrit

(*) \le \varepsilon \sum_{j \in A} C_{j,n}(u) + 2 \sup_x |f(x)| \sum_{j \in A^c} C_{j,n}(u) \le \varepsilon + 2 \|f\|_\infty \sum_{j \in A^c} C_{j,n}(u).

Or,

\sum_{j \in A^c} C_{j,n}(u) \le (2n+1) C_{0,n}(\delta) \rightarrow 0,

d’où pour n suffisamment grand on obtient

|T_n (u) - f(u)| < 2\varepsilon.

Comme \delta et n ne dépendent pas de u, et puisque \varepsilon > 0 était arbitraire, T_n converge uniformément vers f. CQFD.

References

[1] Róth. Á. et al. (2009). A cyclic basis for closed curve and surface modelling. Computer Aided Geometric Design, 26, 528-546.

[2] Bernstein, S. (1912). Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités.

Leave a comment

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s